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Initial Algebra Semantics is Enough!

Patricia Johann⋆ and Neil Ghani⋆⋆

Abstract. Initial algebra semantics is a cornerstone of the theory of
modern functional programming languages. For each inductive data type,
it provides a fold combinator encapsulating structured recursion over
data of that type, a Church encoding, a build combinator which con-
structs data of that type, and a fold/build rule which optimises modu-
lar programs by eliminating intermediate data of that type. It has long
been thought that initial algebra semantics is not expressive enough to
provide a similar foundation for programming with nested types. Specif-
ically, the folds have been considered too weak to capture commonly
occurring patterns of recursion, and no Church encodings, build combi-
nators, or fold/build rules have been given for nested types. This paper
overturns this conventional wisdom by solving all of these problems.

1 Introduction

Initial algebra semantics is one of the cornerstones of the theory of modern func-
tional programming languages. It provides support for fold combinators encap-
sulating structured recursion over data structures, thereby making it possible
to write, reason about, and transform programs in principled ways. Recently,
(13) extended the usual initial algebra semantics for inductive types to support
not only standard fold combinators, but Church encodings and build combi-
nators for them as well. In addition to being theoretically useful in ensuring that
build is seen as a fundamental part of the basic infrastructure for programming
with inductive types, this development has practical merit: the fold and build

combinators can be used to define fold/build rules which optimise modular
programs by eliminating intermediate inductive data structures. When applied
to lists, this optimisation is known as short cut fusion.

Nested data types have become increasingly popular in recent years (1; 3; 5; 6;
7; 14; 15; 16; 17; 20). They have been used to implement a number of advanced
data types in languages, such as Haskell, which support higher-kinded types.
Among these data types are those with constraints, such as perfect trees (16);
types with variable binding, such as untyped λ-terms (2; 5; 8); cyclic data struc-
tures (11); and certain dependent types (21). The expressiveness of nested types
lies in their generalisation of the traditional treatment of types as free-standing
individual entities to entire families of types. To illustrate this point, consider
the type of lists of elements of type a. This type can be realised in Haskell via
the declaration data List a = Nil | Cons a (List a). As this declaration
makes clear, the type List a can be defined independently of any type List b

for b distinct from a. Moreover, since each type List a is, in isolation, an in-
ductive type, the type constructor List is seen to define a family of inductive
types. Compare the declaration for List a with the declaration
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data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

defining the type Lam a of untyped λ-terms over variables of type a up to α-
equivalence. By contrast with List a, the type Lam a cannot be defined in terms
of only those elements of Lam a that have already been constructed. Indeed,
elements of the type Lam (Maybe a) are needed to build elements of Lam a so
that, in effect, the entire family of types determined by Lam has to be constructed
simultaneously. Thus, rather than defining a family of inductive types as List

does, Lam defines an inductive family of types.
Given the increased expressivity of nested types over inductive types, and the

ensuing growth in their use, it is natural to ask whether initial algebra semantics
can give a principled foundation for structured programming with nested types.
Until now this has not been considered possible. In particular, fold combinators
derived from initial algebra semantics for nested types have not been considered
expressive enough to capture certain commonly occurring patterns of structured
recursion over data of those types. This has led to a theory of generalised folds
for nested types (1; 3; 6). Moreover, no Church encodings, build combinators,
or fold/build fusion rules have been proposed or defined for nested types.

This paper overturns this conventional wisdom and provides the ideal result,
namely that initial algebra semantics is enough to provide a principled founda-
tion for programming with nested types. Our major contributions are as follows:

• We define a generalised fold combinator gfold for every nested type and
show it to be uniformly interdefinable with the corresponding hfold combi-
nator derived from initial algebra semantics. Our gfold combinators coincide
with the generalised folds in the literature whenever the latter are defined.
The hfold combinators provided by initial algebra semantics thus capture
exactly the same kinds of recursion as the generalised folds in the literature.

• We give the first-ever Church encodings for nested types. In addition to
being interesting in their own right, these encodings are the key to defining
the first-ever build combinators for nested types. Coupling each hbuild

combinator with its corresponding hfold combinator in turn gives the first-
ever hfold/hbuild rules for nested types, and thus extends short cut fusion
to these types. A similar story holds for the gfold and gbuild combinators.

We make several other important contributions. First, we execute the above
program in a generic style by providing a single generic hfold combinator, a
single generic hbuild operator, and a single generic hfold/hbuild rule, each of
which can be specialised to any particular nested type of interest — and similarly
for the generalised combinators. Secondly, while the theory of nested types has
previously been developed only for limited classes of nested types arising from
certain syntactically defined classes of rank-2 functors, our development handles
all rank-2 functors. Finally, we give a complete implementation of our ideas in
Haskell, available at http://www.cs.nott.ac.uk/~nxg. This demonstrates the
practical applicability of our ideas, makes them more accessible, and provides a
partial guarantee of their correctness via the Haskell type-checker. This paper
can therefore be read both as abstract mathematics, and as providing the basis



for experiments and practical applications. Past work on nested types did not
come with full implementations, in part because essential features such as explicit
and nested forall-types have only recently been added to Haskell.

Our result that initial algebra semantics is expressive enough to provide a
foundation for programming with nested types allows us to capitalise on the
increased expressiveness of nested types over inductive types without requiring
the development of any fundamentally new theory. Moreover, this foundation is
simple, clean, and accessible to anyone with an understanding of the basics of
initial algebra semantics. This is important, since it guarantees that our results
are immediately usable by functional programmers. Further, by closing the gap
between initial algebra semantics and Haskell’s data types, this paper clearly
contributes to the foundations of functional programming. This paper also serves
as a compelling demonstration of the practical applicability of left and right Kan
extensions — which are the main technical tools used to define our gfolds and
prove them interdefinable with the hfolds — and thus has the potential to
render them mainstays of functional programming.

The paper is structured as follows. Section 2 recalls the initial algebra seman-
tics of inductive types. Section 3 recalls the derivation of fold combinators from
initial algebra semantics for nested types, and derives the first Church encodings,
build combinators, and fold/build rules for them. Section 4 defines our gfold
combinators for nested types and shows that they are interdefinable with their
corresponding hfold combinators. It also derives our gbuild combinators and
gfold/gbuild rules for nested types. Section 5 mentions the coalgebraic duals
of our combinators and draws some conclusions.

2 Initial Algebra Semantics for Inductive Types

Inductive data types are fixed points of functors. Functors can be implemented
in Haskell as type constructors supporting fmap functions as follows:

class Functor f where fmap :: (a -> b) -> f a -> f b

The function fmap is expected to satisfy the two semantic functor laws stating
that fmap preserves identities and composition. As is well known (12; 13; 23),
every inductive type has an associated fold and build combinator which can
be implemented generically in Haskell as

newtype M f = Inn {unInn :: f (M f)}

ffold :: Functor f => (f a -> a) -> M f -> a

ffold h (Inn k) = h (fmap (ffold h) k)

fbuild :: Functor f => (forall b. (f b -> b) -> b) -> M f

fbuild g = g Inn

These fbuild and ffold combinators can be used to construct and eliminate
inductive data structures of type M f from computations. Indeed, if f is any



functor, h is any function of any type f a -> a, and g is any function of closed
type forall b. (f b -> b) -> b, we have the fold/build rule:

ffold h (fbuild g) = g h (1)

When specialised to lists, this gives the familiar combinators

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr c n [] = n

foldr c n (x:xs) = c x (foldr c n xs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

Intuitively, foldr c n xs produces a value by replacing all occurrences of (:) in
xs by c and the occurrence of [] in xs by n. Thus, sum xs = foldr (+) 0 xs

sums the (numeric) elements of the list xs. On the other hand, build takes as
input a type-independent template for constructing “abstract” lists and produces
a corresponding “concrete” list. Thus, build (\c n -> c 4 (c 7 n)) produces
the list [4,7]. List transformers can be written in terms of both foldr and
build. For example, the standard map function for lists can be implemented as

map :: (a -> b) -> [a] -> [b]

map f xs = build (\c n -> foldr (c . f) n xs)

The function build is not just of theoretical interest as the producer counter-
part to the list consumer foldr. In fact, build is an important ingredient in short
cut fusion (9; 10), a widely-used program optimisation which capitalises on the
uniform production and consumption of lists to improve the performance of list-
manipulating programs. For example, if sqr x = x * x, then the specialisation
of (1) to lists — i.e., the rule fold c n (build g) = g c n — can transform
the modular function sum (map sqr xs) :: [Int] -> Int which produces an
intermediate list into an optimised form which produces no such lists:

sum (map sqr xs) = foldr (+) 0

(build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0

= foldr ((+) . sqr) 0 xs

If we are to generalise the treatment of inductive types given above to more
advanced data types, we must ask ourselves why fold and build combinators
exist for inductive types and why the associated fold/build rules are correct.
One elegant answer is provided by initial algebra semantics. Within the paradigm
of initial algebra semantics, every data type is the carrier of the initial algebra
µF of a functor F : C → C. If C has both an initial object and ω-colimits, and F
preserves ω-colimits, then F does indeed have an initial algebra. Lambek’s lemma
ensures that the structure map in of an initial algebra is an isomorphism, and
thus that the carrier of the initial algebra of a functor is a fixed point of that



functor. The interpretation of a given data type as an initial algebra of a functor
F ensures that there is a unique F -algebra homomorphism from this initial F -
algebra to any other F -algebra. If (A, h) is an F -algebra, then fold h : µF → A

is the map underlying this homomorphism and makes the following diagram
commute:

F (µF )
F (foldh)

//

in

��

FA

h

��

µF
foldh

// A

From this diagram, we see that the type of fold is (FA → A) → µF → A and
that fold h satisfies fold h (in t) = h (F (fold h) t). This justifies the defini-
tion of the ffold combinator given above. Also, the uniqueness of the mediating
map ensures that, for every algebra h, the map fold h is defined uniquely. This
provides the basis for the correctness of fold fusion for inductive types, which
states that if h and h′ are F -algebras and ψ is an F -algebra homomorphism from
h to h′, then ψ . fold h = fold h′. But note that fold fusion (3; 5; 6; 7; 20), is
completely different from, and inherently simpler than, the fold/build fusion
which is central in this paper, and which we discuss next.

Although fold combinators for inductive types can be derived entirely from,
and understood entirely in terms of, initial algebra semantics, regrettably the
standard initial algebra semantics does not provide a similar principled deriva-
tion of the build combinators or the correctness of the fold/build rules. This
situation was rectified in (13), which considered the initial F -algebra for a func-
tor F to be not only the initial object of the category of F -algebras, but also the
limit of the forgetful functor from the category of F -algebras to the underlying
category C as well. When F has an initial algebra, no extra structure is required
of either F or C for this limit to exist. This characterisation of initial algebras as
both limits and colimits is what we call the extended initial algebra semantics. As
shown in (13), an initial F -algebra has a different universal property as a limit
from the one it inherits as a colimit. This alternate universal property ensures:

• The projection from the limit (the initial F -algebra) to the carrier of each
algebra defines the fold combinator with type (Fx→ x) → µF → x.

• The mediating morphism maps a cone with arbitrary vertex c to a map
from c to µF . Since a cone with vertex c has type ∀x.(Fx → x) → c → x,
the mediating morphism defines the build combinator, which will thus have
type (∀x. (Fx→ x) → c→ x) → c→ µF .

• The correctness of the fold/build fusion rule fold h . build g = g h then
follows from the fact that fold after build is a projection after a mediating
morphism, and thus is equal to the cone applied to a specific algebra.

The extended initial algebra semantics thus shows that, given a parametric in-
terpretation of the quantifier forall, there is an isomorphism between the type
c -> M f and the “generalised Church encoding” forall x. (f x -> x) ->



c -> x. The term “generalised” reflects the presence of the parameter c, which
is absent in other Church encodings (23), but is essential to the derivation of
build combinators for nested types. Choosing c to be the unit type gives the
usual isomorphism between an inductive type and its usual Church encoding.

3 Initial Algebra Semantics for Nested Types

Although many types of interest can be expressed as inductive types, these
types are not expressive enough to capture all data structures of interest. Such
structures can, however, often be expressed in terms of nested types.

Example 1 The type of perfect trees over type a is given by

data PTree a = PLeaf a | PNode (PTree (a,a))

The recursive constructor PNode stores not pairs of trees, but rather trees with
data of pair types. Thus, PTree a is a nested type for each a. Perfect trees are
easily seen to be in one-to-one correspondence with lists whose length is a power
of two, and hence illustrate how nested types can be used to capture structural
constraints on data types. Another example of nested types is given by

Example 2 The type of (α-equivalence classes of) untyped λ-terms over vari-
ables of type a is given by

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

Elements of type Lam a include Abs (Var Nothing) and Abs (Var (Just x)),
which represent λx.x and λy.x, respectively. We observed above that each nested
type constructor defines an inductive family of types. It is thus natural to model
nested types as least fixed points of functors on the category of endofunctors on C,
written [C, C]. In this category, objects are functors and morphisms are natural
transformations. We call such functors higher-order functors, and denote the
fixed point of a higher-order functor f by Mu f. Our implementation cannot use
the constructor M introduced above because Haskell lacks polymorphic kinding.

class HFunctor f where

ffmap :: Functor g => (a -> b) -> f g a -> f g b

hfmap :: Nat g h -> Nat (f g) (f h)

newtype Mu f a = In {unIn :: f (Mu f) a}

A higher-order functor thus maps functors to functors via the ffmap operation
and natural transformations to natural transformations via the hfmap operation.
While not explicit in the class definition above, the programmer is expected to
verify that if g is a functor, then f g satisfies the functor laws. The type of
natural transformations can be given in Haskell by type Nat g h = forall a.

g a -> h a, since a parametric interpretation of the forall quantifier ensures
that the naturality squares commute. Putting this all together, we have



Example 3 The nested types of perfect trees and untyped λ-terms from Exam-
ples 1 and 2 arise as fixed points of the higher-order functors

data HPTree f a = HPLeaf a | HPNode (f (a,a))

data HLam f a = HVar a | HApp (f a) (f a) | HAbs (f (Maybe a))

respectively. Indeed, the types PTree a and Lam a are isomorphic to the types
Mu HPTree a and Mu HLam a.

Pleasingly, fold combinators for nested types can be derived by simply instan-
tiating the ideas from Section 2 in a category of endofunctors. Of course, now
the structure map of an algebra is a natural transformation, and the result of a
fold is a natural transformation from a nested type to the carrier of the algebra.
Using the synonym type Alg f g = Nat (f g) g for such algebras, we have

hfold :: HFunctor f => Alg f g -> Nat (Mu f) g

hfold m (In u) = m (hfmap (hfold m) u)

Example 4 The fold combinator for perfect trees is1

foldPTree :: (forall a. a -> f a) ->

(forall a. f (a,a) -> f a) -> PTree a -> f a

foldPTree f g (PLeaf x) = f x

foldPTree f g (PNode xs) = g (foldPTree f g xs)

The uniqueness of hfold, guaranteed by its derivation from initial algebra se-
mantics, provides the basis for the correctness of fold fusion for nested types (7).
As mentioned above, fold fusion is not the same as fold/build fusion. In par-
ticular, the latter has not previously been considered for nested types.

Recall from Section 2 that Church encodings and build combinators for in-
ductive types can be derived from the characterisation of the initial F -algebra
as the limit of the forgetful functor from the category of F -algebras to the un-
derlying category, and that this gives an isomorphism between types of the form
c -> M f and generalised Church encodings forall x. (f x -> x) -> c -> x.
Since this isomorphism holds for all functors, including higher-order ones, We
should be able to instantiate it for higher-order functors to derive Church en-
codings and build combinators for nested types. And indeed we can. This gives
the following Haskell code:

hbuild :: (HFunctor f, Functor c) =>

(forall x. Alg f x -> Nat c x) -> Nat c (Mu f)

hbuild g = g In

It is worth noticing that each hbuild combinator follows the definitional format
of the build combinators for inductive types: it applies its argument to the
structure map In of the initial algebra of the higher-order functor f with which
it is associated. For our running example of perfect trees, we have the following:

1 Here we have used standard type isomorphisms to “unbundle” the input type Alg

HPTree f for foldPTree. Such unbundling will be done without comment henceforth.



Example 5 The hbuild combinator for perfect trees is given concretely by

buildPTree :: (forall x. (forall a. a -> x a) ->

(forall a. x (a,a) -> x a) ->

(forall a. c a -> x a)) -> Nat c PTree

buildPTree g = g PLeaf PNode

The extended initial algebra semantics ensures that hbuild and (an argument-
permuted version of) hfold are mutually inverse, and thus that the following
fold/build rule holds for nested types:

Theorem 1 If f is a higher-order functor, c and a are functors, h is the struc-
ture map of an algebra Alg f a, and g is any function of closed type forall x.

Alg f x -> Nat c x, then

hfold h . hbuild g = g h (2)

Note that the application of ffold h to fbuild g in (1) has been generalised
by the composition of hfold h and hbuild g in (2). This is because c remains
uninstantiated in the nested setting, whereas it is specialised to the unit type in
the inductive one. For our running example, we have the following:

Example 6 The instantiation of (2) for perfect trees is

foldPTree l n . buildPTree g = g l n

From Section 2, to ensure that a higher-order functor F on C has an initial
algebra we need that the category [C, C] has an initial object and ω-colimits, and
that F preserves ω-colimits. But only the latter actually needs to be verified
since the initial object and ω-colimits in [C, C] are inherited from those in C.

4 Generalised Folds, Builds, and Short Cut Fusion

In this section we recall the generalised fold combinators — here called gfolds
— from the literature (1; 3; 6). We also introduce a corresponding generalised
build combinator gbuild and a gfold/gbuild fusion rule for each nested type.
We show that, just as the gfold combinators are instances of the hfold com-
binators, so the gbuild combinators are instances of the hbuild combinators,
and the gfold/gbuild rules can be derived from the hfold/hbuild rules. These
results are important because, until now, it has been unclear which general prin-
ciples should underpin the definition of gfold combinators, and because gbuild
combinators and gfold/gbuild rules have not existed. Our rendering of the
generalised combinators and fusion rules as instances of their counterparts from
Section 3 shows that the same principles of initial algebra semantics that gov-
ern the behaviour of hfold, hbuild, and hfold/hbuild fusion also govern the
behaviour of gfold, gbuild, and gfold/gbuild fusion. In particular, whereas
gfolds have previously been defined only for certain syntactically defined classes
of higher-order functors, initial algebra semantics allows us to define gfolds for
all higher-order functors, and to do so in such a way that our gfolds coincide



with the gfolds in the literature whenever the latter are defined. Our reduction
of gfolds to hfolds can thus be seen as an extension of the results of (1).

Generalised folds arise when we want to consume a structure of type Mu f a

for a single type a. The canonical example is the function psum :: PTree Int

-> Int which sums the (integer) data in a perfect tree (16). It seems psum

cannot be expressed in terms of hfold since hfold consumes expressions of
polymorphic type, and PTree Int is not such a type. Naive attempts to define
psum will fail because the recursive call to psum must consume a structure of type
PTree (Int,Int) rather than PTree Int. These considerations have led to the
development of generalised fold combinators for nested types (1; 3; 6). Like
the hfold combinator for a nested type, the generalised fold takes as input an
algebra of type Alg f g for a higher-order functor f whose fixed point the nested
type constructor is. But while the hfold returns a result of type Nat (Mu f) g,
the corresponding generalised fold returns a result of the more general type
Nat (Mu f ‘Comp‘ g) h, where Comp represents the composition of functors:

newtype Comp g h a = Comp {icomp :: g (h a)}

instance (Functor g, Functor h) => Functor (g ‘Comp‘ h) where

fmap k (Comp t) = Comp (fmap (fmap k) t)

However, Mu f ‘Comp‘ g is not necessarily an inductive type constructor, so
there is no clear theory upon which the definition of gfolds can be based. Al-
ternatively, psum can be defined using an accumulating parameter as follows:

psum :: PTree Int -> Int

psum xs = psumAux xs id

psumAux :: PTree a -> (a -> Int) -> Int

psumAux (PLeaf x) e = e x

psumAux (PNode xs) e = psumAux xs (\(x,y) -> e x + e y)

Here, psumAux generalises psum to take as input an environment of type a -> Int

which is updated to reflect the extra structure in the recursive calls. Thus,
psumAux is a polymorphic function which returns a continuation of type (a ->

Int) -> Int. To construct our generalised folds, we will actually use a gener-
alised form of continuation whose environment stores values parameterised by a
functor g, and whose results are parameterised by a functor h. We have

newtype Ran g h a = Ran {iran :: forall b. (a -> g b) -> h b}

Categorically, these continuations are just right Kan extensions, which are
defined as follows. Given a functor G : A → B and a category C, precomposition
with G defines a functor ◦G : [B, C] → [A, C]. A right Kan extension is a right
adjoint to ◦ G. More concretely, given a functor H : A → C, the right Kan
extension of H along G, written RanGH , is defined via the natural isomorphism
[A, C](F ◦G,H) ∼= [B, C](F,RanGH). The classic end formula (see (19) for details)
underlies the implementation of a right Kan extension in Haskell as a universally



quantified type, with relational parametricity guaranteeing that we do get a
proper end as opposed to simply a universally quantified formula.

We stress that no categorical knowledge of Kan extensions is needed to un-
derstand the remainder of this paper; indeed, the few concepts we use which
involve them will be implemented in Haskell. However, we retain the terminol-
ogy to highlight the mathematical underpinnings of generalised continuations,
and to bring to a wider audience the computational usefulness of Kan extensions.

The bijection characterising right Kan extensions can be implemented as

toRan :: Functor k => Nat (k ‘Comp‘ g) h -> Nat k (Ran g h)

toRan s t = Ran (\env -> s (Comp (fmap env t)))

fromRan :: Nat k (Ran g h) -> Nat (k ‘Comp‘ g) h

fromRan s (Comp t) = iran (s t) id

The polymorphic function psumAux is a natural transformation from PTree to
Ran (Con Int) (Con Int), where Con k is the constantly k-valued functor de-
fined by newtype Con k a = Con {icon :: k}.2 This suggests that an alter-
native to inventing a generalised fold combinator to define psumAux is to first
endow the functor Ran (Con Int) (Con Int) with an appropriate algebra struc-
ture and then define psumAux as the application of hfold to that algebra.

Giving a direct definition of an algebra structure for Ran g h turns out to
be rather cumbersome. Instead, we circumvent this difficulty by drawing on the
intuition inherent in the continuations metaphor for Ran g h. If y is a functor,
then an interpreter for y with a polymorphic environment which stores values
parameterised by g and whose results are parameterised by h is a function of type
type Interp y g h = Nat y (Ran g h). Such an interpreter takes as input a
value of type y a and an environment of type a -> g b, and returns a result of
type h b. Associated with the type synonym Interp is the function

runInterp :: Interp y g h -> y a -> (a -> g b) -> h b

runInterp k y e = iran (k y) e

An interpreter transformer can now be defined as a function which takes as input
a higher-order functor f and functors g and h, and returns a map which takes
as input an interpreter for any functor y and produces an interpreter for the
functor f y. We can define a type of interpreter transformers in Haskell by

type InterpT f g h = forall y. Functor y =>

Interp y g h -> Interp (f y) g h

We argue informally that interpreter transformers are relevant to the study
of nested types. Recall that the hfold combinator for a higher-order functor f

must compute a value for each value of type Mu f a, and the functor Mu f can be

2 The use of constructors such as Con and Comp is required by Haskell. Although the
price of lengthier code and constructor pollution is unfortunate, we believe it is
outweighed by the benefits of having an implementation.



considered the colimit of the sequence of approximations f^n 0, where 0 is the
functor whose value is constantly the empty type. We can define an interpreter
for 0 since there is nothing to interpret. An interpreter transformer allows us to
produce an interpreter for f 0, then for f^2 0, and so on, and thus contains all
the information necessary to produce an interpreter for Mu f. This intuition can
be formalised by showing that interpreter transformers are algebras. We have:

toAlg :: InterpT f g h -> Alg f (Ran g h)

toAlg interpT = interpT idNat

fromAlg :: HFunctor f => Alg f (Ran g h) -> InterpT f g h

fromAlg h interp = h . hfmap interp

where idNat :: Nat f f is the identity natural transformation defined by idNat

= id. Parametricity and naturality guarantee that toAlg and fromAlg are mu-
tually inverse. Thus, interpreter transformers are simply algebras over right Kan
extensions presented in a more computationally intuitive manner. We now define

gfold :: HFunctor f => InterpT f g h -> Nat (Mu f) (Ran g h)

gfold interpT = hfold (toAlg interpT)

The function

rungfold :: HFunctor f =>

InterpT f g h -> Mu f a -> (a -> g b) -> h b

rungfold interpT = iran . gfold interpT

removes the Ran constructor from the output of gfold to expose the underlying
function. An alternative definition of gfoldwould have Nat (Mu f ‘Comp‘ g) h

as its return type and use toRan to compute functions whose natural return types
are of the form Nat (Mu f) (Ran g h). But, contrary to expectation, gfold
combinators defined in this way are not expressive enough to represent all uni-
form consumptions with return types of this form. For example, the function
fmap :: (a -> b) -> Mu f a -> Mu f b in the Functor instance declaration
for Mu f given at the end of this section is written using the gfold combinator
defined above. However, defining fmap as the composition of toRan and a call
to a gfold combinator with return type of the form Nat (Mu f ‘Comp‘ g) h is
not possible. This is because the use of toRan assumes the functoriality of Mu f

— which is precisely what defining fmap establishes.
We have thus defined the first-ever generalised fold combinators for all

higher-order functors and done so uniformly in terms of their corresponding
hfold combinators. Our definition is different from, but, as noted above, prov-
ably equal to, the definition given in (1) for the class of functors treated there. It
also differs from all definitions of generalised folds appearing in the literature,
since none of these establishes that the gfold combinator for any nested type
can be defined in terms of its corresponding hfold combinator.

We come full circle by using the specialisation of the gfold combinator to
the higher-order functor HPTree to define a function sumPTree which is equiv-
alent to psum. We first define an auxiliary function sumAuxPTree, in terms of



which sumPTree itself will be defined. To define sumAuxPTree we must define an
interpreter transformer; we do this by giving its two unbundled components:

type PLeafT g h = forall y. forall a.

Nat y (Ran g h) -> a -> Ran g h a

type PNodeT g h = forall y. forall a.

Nat y (Ran g h) -> y (a,a) -> Ran g h a

gfoldPTree :: PLeafT g h -> PNodeT g h -> PTree a -> Ran g h a

gfoldPTree l n = foldPTree (l idNat) (n idNat)

psumL :: PLeafT (Con Int) (Con Int)

psumL pinterp x = Ran (\e -> e x)

psumN :: PNodeT (Con Int) (Con Int)

psumN pinterp x = Ran (\e -> runInterp pinterp x (update e))

update e (x,y) = e x ‘cplus‘ e y

where cplus (Con a) (Con b) = Con (a+b)

sumAuxPTree :: PTree a -> Ran (Con Int) (Cont Int) a

sumAuxPTree = gfoldPTree psumL psumN

sumPTree :: PTree Int -> Int

sumPTree = icon . fromRan sumAuxPTree . Comp . fmap Con

Thus, sumPTree is essentially fromRan sumAuxPTree— ignoring the constructor
pollution introduced by Haskell, that is.

Our next example uses generalised folds to show that untyped λ-terms are
an instance of the monad class. Here, gfold is used to define the bind operation
>>=, which captures substitution.

subAlg :: InterpT HLam (Mu HLam) (Mu HLam)

subAlg k (HVar x) = Ran (\e -> e x)

subAlg k (HApp t u) = Ran (\e -> In (HApp (runInterp k t e)

(runInterp k u e)))

subAlg k (HAbs t) = Ran (\e -> In (HAbs (runInterp k t (lift e))))

lift e (Just x) = fmap Just (e x)

lift e Nothing = In (HVar Nothing)

instance Monad (Mu HLam) where

return = In . HVar

t >>= f = rungfold subAlg t f

Finally, note that we can also put the generic form of generalised folds to
good use. We illustrate this by using gfold to establish that all nested types are
functors as follows. Let Id a = Id unid :: a. Then



mapAlg :: HFunctor f => InterpT f Id (Mu f)

mapAlg k t = let k1 t = runInterp k t Id

in Ran (\e -> In (hfmap k1 (ffmap (unid . e) t)))

instance HFunctor f => Functor (Mu f) where

fmap k t = rungfold mapAlg t (Id . k)

It is natural to ask whether or not there exist generalised build combinators
corresponding to our generalised folds. Since the gfold combinators return
results of type Nat (Mu f) (Ran g h), their corresponding generalised builds
should produce results with types of the form Nat c (Mu f). But the fact that
generalised folds are representable as certain hfolds suggests that we should
be able to define such generalised builds in terms of our hbuild combinators,
rather then defining entirely new build combinators. Taking c to be the left
Kan extension Lan g h dual to Ran g h (see (19) for details) and implemented
in Haskell as

data Lan g h a = forall b. Lan (g b -> a, h b)

we have

gbuild :: HFunctor f => (forall x. Alg f x -> Nat (Lan g h) x)

-> Nat (Lan g h) (Mu f)

gbuild = hbuild

The Haskell functions

toLan :: Functor f => Nat h (f ‘Comp‘ g) -> Nat (Lan g h) f

toLan s (Lan (val, v)) = fmap val (icomp (s v))

fromLan :: Nat (Lan g h) f -> Nat h (f ‘Comp‘ g)

fromLan s t = Comp (s (Lan (id, t)))

code the bijection between types of the form Nat h (f ‘Comp‘ g) and Nat

(Lan g h) f characterising left Kan extensions. The simplicity of the definition
of gbuild highlights the importance of choosing an appropriate formalism, here
Kan extensions, to reflect inherent structure. While it appears that defining the
gbuild combinators requires no effort at all once we have the hbuild combi-
nators, the key insight lies in introducing the abstraction Lan and using the
bijection between Nat h (f ‘Comp‘ g) and Nat (Lan g h) f.

As an immediate consequence of Theorem 1 we have

Theorem 2 If f is a higher-order functor, g, h and h’ are functors, k is an
algebra presented as an interpreter transformer of type InterpT f g h’, and l

is a function of closed type forall x. Alg f x -> Nat (Lan g h) x, then

gfold k . (gbuild l) = l (toAlg k) (3)

Examples of generalised short cut fusion in action will be given in a journal
version of this paper.



5 Conclusion and Future work

We have extended the standard initial algebra semantics for nested types to aug-
ment the standard hfold combinators for such types with the first-ever Church
encodings, hbuild combinators, and hfold/hbuild rules for them. In fact, we
have capitalised on the uniformity of the isomorphism between nested types
and their Church encodings to derive a single generic standard hfold combina-
tor, a single generic standard hbuild operator, and a single generic standard
hfold/hbuild rule, each of which can be specialised to any particular nested
type of interest. We have also defined a generic generalised fold combinator,
a generic generalised build combinator, and a generic generalised fold/build
rule, each of which is uniformly interdefinable with the corresponding standard
construct for nested types. The uniformity of both the standard and generalised
constructs derives from a technical approach based on initial algebras of func-
tors. Our generalised fold combinators coincide with the generalised folds in
the literature when the latter are defined. Moreover, our approach is the first to
apply to all nested types, and thus provides a principled and elegant foundation
for programming with them. We also give the first (Haskell) implementation of
these combinators, and illustrate their use in several examples. We believe this
paper contributes to a settled foundation for programming with nested types.

In fact, our approach also straightforwardly dualises to the coinductive set-
ting. Shortage of space prevents us from giving the corresponding constructs and
results in detail in this paper, so we simply present their implementation:

type CoAlg f g = Nat g (f g)

hunfold :: HFunctor f => CoAlg f g -> Nat g (Mu f)

hunfold k x = In (hfmap (hunfold k) (k x))

hdestroy :: (HFunctor f, Functor c) =>

(forall g. CoAlg f g -> Nat g c) -> Nat (Mu f) c

hdestroy g = g out

out :: Nat (Mu f) (f (Mu f))

out (In t) = t

-- fusion rule: hdestroy g . hunfold k = g k

The categorical semantics of (13) reduces correctness of fold/build rules to
the problem of constructing a parametric model which respects that semantics.
An alternative approach is taken in (18), where the operational semantics-based
parametric model of (22) is used to validate the fusion rules for algebraic data
types introduced in that paper. Extending these techniques to tie the correctness
of fold/build rules into an operational semantics of the underlying functional
language is one direction for future work. Finally, the techniques of this paper
may provide insights into theories of folds, builds, and fusion rules for advanced
data types, such as mixed variance data types, GADTs, and dependent types.
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